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Nonlocal competition and the speciation transition on random networks
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A simple model for competition-induced speciation is presented and analyzed. Logistic growth with nonlocal

interaction is studied on regular and random networks, and the large scale structure of the emerging genomic
frequencies is examined. The neutrality assumption is violated if the network is random and the competition is
nonlocal. Instead, “hubs” in the sequence space are suppressed by the competition more than nodes of a lower
degree. Thus speciation is unavoidable for large-scale free networks. The emerging genetic mixture depends
strongly on the initial conditions. The frequency of hubs is much greater in a population that evolved from a
single nucleation event than in a population that recovered from a catastrophe.
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I. INTRODUCTION

The origin of species, i.e., the mechanism that leads to
speciation between individuals sharing the same ancestry, is
one of the fundamental problems in the theory of evolution.
The speciation mechanisms suggested so far are traditionally
[1] classified according to the level of geographic separation
between subpopulations. If the genetic divergence is attrib-
uted to the geographic isolation of a subpopulation, the
mechanism is called allopatric. Parapatric speciation occurs
when the mixing between geographic locations is partial,
while sympatric speciation takes place in a well-mixed popu-
lation. The most challenging task is to explain sympatric
speciation, where the continuous genetic mixing tends to op-
pose divergence; it is difficult to explain how stochastic dy-
namics in the genomic landscape, induced by mutations, lead
to substantial reproductive isolation.

A minimal model for evolutionary dynamics and specia-
tion [2] regards any organism as a sequence of genes that has
some fitness, where fitness is a measure of the organism’s
reproductive ability. If the set of all possible genotypes is
regarded as the network vertices, and a (possibly directed)
bond connects any pair of genotypes that may transform into
each other by a single mutation, one gets the genotype (se-
quence) space. The evolutionary dynamics take place on this
space, and are affected by its topology and the fitness asso-
ciated with each genotype. This whole structure—the geno-
type network plus the fitness function defined on its
vertices—is known as the adaptive (fitness) landscape [3].

The classic description of evolution and speciation is
based on Wright’s idea of local hill climbing, or adaptation,
on the adaptive landscape [3]. If peaks in the fitness land-
scape are associated with highly reproductive genetic se-
quences, and “valleys” are sequences of low fitness, the
population on the hills is growing faster; if the total popula-
tion is fixed, the favored population takes over, and the “val-
ley” inhabitants undergo extinction. Two species, according
to this picture, correspond to two different hills in the adap-
tive landscape. Speciation is an event of “tunneling” between
hills; it occurs when unfit hybrids (whose genotype lies in
the adaptive valley) survive the competition with their highly
fit ancestors until another set of mutations brings them to the
next adaptive peak.
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Theoretical studies [4,5] have pointed out many problems
with this classic scenario. In particular, since a single peak is,
dynamically speaking, an attractive fixed point, the charac-
teristic time for a stochasticity-induced peak shift grows ex-
ponentially with the population size. Plugging typical num-
bers for the fitness variance and the size of the population,
results in an unrealistically large time scale (of order 10°°
generations) for speciation to occur. These results, together
with other theoretical problems, led to a major shift in focus,
and speciation is currently attributed to random genetic drift
on neutral, or nearly neutral, adaptive landscapes. Basically,
genotypes are assumed to be either viable or nonviable, and
the fitness differences between viable sequences are negli-
gible [6]. The sequence space is considered as an L dimen-
sional hypercube, and one should “subtract” from this struc-
ture all the points that correspond to nonviable sequences. If
the fraction of viable sequences is not too small, the high
connectivity of the sequence space ensures that a single con-
nected cluster of viable points exists and spans the sequence
space (technically speaking, the system is above the site per-
colation threshold [5]). The resulting dynamics are simply
stochastic motion (random walk due to mutations) on that
spanning cluster. Note that since fitness and viability are cor-
related in the sequence space, one should not assume that the
topology of the spanning cluster is determined by percolation
theory; the actual topology of the viable mutations network
is, as far as we know, unknown.

While the above model does allow for increasing geno-
typic diversity within a population, the phenomenon of spe-
ciation is still to be explained. Indeed, a mechanism for dis-
ruptive selection, i.e., selection against phenotypically
intermediate individuals, should be incorporated into the
model [7]. Many authors have suggested that the disruptive
selection happens due to frequency-dependent competition
for a resource; while similar phenotypes (close nodes in the
sequence space) interact strongly, dissimilar individuals are
not competing for the same resource. As an example, birds
with different beak sizes consume different types of seeds.

Dieckmann and Doebelli [8] have suggested that
frequency-dependent competition may induce speciation
even in the presence of a strong adaptive peak. They con-
sider a one-dimensional sequence space, and associate se-
quence with trait, such that proximity in the sequence space
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reflects similarity in traits. The growth rate is higher for a
specific trait and becomes smaller further away from it, such
that this trait is the “fittest” in the Darwinian sense. If the
global carrying capacity is fixed, the population is localized
on the optimal trait. However, if the carrying capacity of a
point in the sequence space depends on the population
around it (since animals with similar traits compete with
each other), the nonlinear interaction may induce bifurcation
that leads to bimodal distribution with a minimum at the
fittest trait, such that the population splits into two different
species. The specific model used by [8], with a Gaussian
kernel for the competition along the trait axis (i.e., the impact
of the population with a given trait on the carrying capacity
of populations with different traits decays with the distance
like a Gaussian), was subject to criticism, as its steady state
solution fails to support speciation [9]. However, non-
Gaussian kernels may lead to speciation [10], and even for
Gaussian kernels, recent works suggest that speciation may
result from environmental [11] or demographic [12] stochas-
ticity.

The emerging picture, thus, is that sympatric speciation
may be modeled on the viable sequence network as a simple
growth process with nonlocal competition, i.e., with compe-
tition between genotypes that are neighbors in the sequence
space. The crucial assumption underlying disruptive selec-
tion is the dependence of the strength of the competition on
the genetic distance. We stress that to achieve speciation,
competition should be neither local nor global. Local com-
petition refers to the scenario in which only individuals with
the same genotype compete for resources. In such a case, all
viable sequences will be populated. On the other hand, if
global competition is assumed, i.e., if the mutual competition
between genotypes is independent of their genetic distance
(like in the Eigen-Schuster quasispecies model [13]), the sys-
tem either allows a unimodal steady state (when the system
is below the error threshold), or fails to adapt (when the
system is above the error threshold). Only nonlocal (yet not
global) competition may induce speciation. For a certain
range of parameters population peaks are “disconnected,”
and the chance to find an individual with an intermediate
genotype in the region between peaks is negligible.

In recent years, many works discussed the conditions un-
der which segregation appears in a model of logistic growth
with nonlocal competition [14-21]. The only difference be-
tween these models and the speciation model described
above is the topology of the underlying network. While
[14-21] dealt with Euclidian geometry, the viable mutations
landscape is most likely some sort of random network. The
aim of this work is to generalize [14-21] to the case of
random networks of different types, and to understand the
connection between the surviving genotypes and the local
topology of the network. We restrict our discussion to the
effect of frequency-dependent competition, and regard the
population as asexual, thus avoiding the discussion of assor-
tative mating and related processes.

It should be stressed that once the competition is nonlocal,
random networks of viable sequences are not neutral any-
more, even if the fitness of all vertices is the same. The
reason is that the number of links is now a factor that affects
the fitness. If a site has a large number of links, this implies
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strong competition and a lower carrying capacity. Thus
“hubs” of the network are suppressed by the competition,
while low-degree nodes admit larger carrying capacity. Here
we intend to show the consequences of this competition-
induced bias on the genetic diversity of the population.

In the following section, we review the known results
about logistic growth with nonlocal competition on a lattice
and generalize them to the case of graphs and trees with a
constant number of links per node. In the third section, we
consider the growth process on the two prototypes of random
networks, namely the Erdés Rényi and the scale-free topolo-
gies. In the last section, we discuss the relevance of our
findings for the study of speciation.

II. LATTICES, TREES, AND GRAPHS

Let us first introduce the results previously found for the
lattice version of our model [14-21]. The simplest, one-
dimensional realization is described by

dc,
dt

=dac,— an YiCn+j — 2 /'Lj(cn - Cn+j) » (l)
J J

where ¢, is the population density on the nth site (this cor-
responds to the abundance of individuals with a certain se-
quence denoted by n), y; corresponds to the strength of the
competition with the population j sites away (where j takes
both positive and negative values, and its absolute value is
the genetic distance), and u; corresponds to the rate of mu-
tations, such that a replication of sequence n results in ge-
nome n+j. Note that the mutation rate is much smaller than
the growth rate, indicating that the loss of population due to
mutations to nonviable genotypes is negligible. If y;=9;,
the system admits only local competition. In such a case,
local initiation results in Fisher-Kolmogorov-Petrowskii-
Piscounov (FKPP) invasion [22], and the steady state is uni-
form, c,=a. If the competition is nonlocal, the system may
undergo speciation transition where the steady state allows
for filled and empty sites. In cases of nearest-neighbor com-
petition (yy=1, ¥+, =1, all other competition terms vanish)
the critical value of y may be calculated [not only for Eq. (1)
but also for its d-dimensional generalization]:

1 +4ud

Ye= m (2

Below this value the steady state remains uniform, while
above this value local initiation yields a checkerboard
(0a0a0a0a---) stable solution, i.e., the speciation transition
takes place at ..

An important distinction should be made between local
and global initiation [20]. If the system is initiated locally by
a small group of founders with the same genome, or at least
with limited genetic diversity (which may occur, e.g., if the
first establishment of a living colony on a certain island hap-
pens due to immigration of a small number of individuals
with minimal genetic diversity, or, in a petri-dish experiment,
when a colony emerges from a single bacterium), its dynam-
ics yield a perfect checkerboard configuration. If, on the
other hand, the system initiation is global (as in the case of
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FIG. 1. Speciation transition point in a regular graph (with de-
gree k=4) vs network size, averaged over five configurations. The
model parameters are a=y,=1, u=0.

immigration of a diverse community to an island, or recov-
ery of a colony after a catastrophe), the dynamics may lead
to frustration. In the latter case, the checkerboard configura-
tion may admit different phases (e.g., empty odd sites vs
empty even sites) on different regions of the lattice, and the
steady state supports different domains connected by domain
walls, or even glasslike structures [20].

The lattice dynamics of Eq. (1) may be generalized to an
arbitrary topology of the viable mutations network:

d_[” =ac,—¢, E 7’(’7,]')0,‘ - 2 Iu’(naj)(cn - Cj)’ (3)

jeq) jeq,

where (V) and () are the sets of genotypes to which species
n can mutate, or with which they compete for resources,
correspondingly. In our simple model, genotypes mutate to
nearest sites on the network and competition also takes place
only between nearest neighbors, such that the sets QZ and
Q')’, reflect the local topology of the network.

The simplest modification of the lattice model is a viable
sequence space with a topology of a Cayley tree. In a Cayley
tree, every node has the same number of neighbors, k, and
there are no loops. For weak competition, a homogenous
stable solution exists, and Eq. (3) becomes ¢=ac—c?>—kyc?,
with the solution c=a/(l+ky). As 7y grows, this homog-
enous solution becomes unstable, and the system reaches the
“up-down” state, where the tree is segregated into an alter-
nating structure of empty and filled layers. This occurs at
v,=(1+2uk)/[k(1=kw)], which is the same result we ob-
tained for a lattice with dimensions d=k/2.

It is well-known that large graphs with random connec-
tions are very similar to trees, as the number of small loops is
negligible [23]. Thus, for fixed k graphs, one should expect
that as N becomes large, the critical value of vy will approach
the corresponding value for a tree, with k branches for each
node. This feature is demonstrated in Fig. 1. Note that the
convergence of the regular graph with the tree behavior is
very slow, since only loops smaller than the diameter of the
network [O(log N)] disappear as the network size grows.
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The convergence in Fig. 1 is thus logarithmic, and for small
networks, the deviation from the tree/lattice value is still
large.

III. RANDOM NETWORKS

Now let us proceed to the more realistic case, where k is
not fixed, i.e., where the number of viable mutations for a
certain sequence is fluctuating. Two generic examples of
such networks are the Erdés Rényi (ER) and the scale-free
(SF) networks [24]. For an ER network the degree of con-
nectivity k is taken from a Poissonian distribution with aver-
age kg, while for a scale-free network the probability P(k)
~k=® decays like a power law at large k.

Random networks differ qualitatively from regular net-
works. In random networks the homogenous state may exist
only without any nonlocal competition. As soon as y>0, no
homogenous solution can satisfy the corresponding set of
differential equations. Assuming c¢;=c, the time dependence
of the population with sequence j is given by

cjzaco—cg—kyco, (4)

where k is the degree of the jth node. Obviously, this equa-
tion may have a nonzero solution only for y=0; for any
nonlocal competition the solution should admit some sort of
dependence on k, the degree of the node. This is the math-
ematical manifestation of the fact discussed above, namely,
that for networks with nonuniform degree distribution and
nonlocal competition, the neutrality assumption breaks
down.

Still, weak competition implies that all the nodes with the
same degree will admit almost the same population. In fact,
one can formulate a mean-field theory, based on this assump-
tion, and solve for the steady-state population as a function
of the degree k. This mean-field theory is presented in the
Appendix, and for low 7y the results show very good agree-
ment with the simulations, as emphasized in Fig. 2, for both
ER and SF networks.

Technically, the region of parameters for which the mean-
field theory works should be viewed as the random network
analog of the uniform solution for regular networks. As ex-
plained above, it is impossible to attain a homogenous solu-
tion on a random network; the mean-field calculation as-
sumes that nodes with the same degree have the same
environment and yields the same ¢, for all the k nodes. As
demonstrated in Fig. 2, population size decays continuously
with &, so only hubs with a very large k maintain a popula-
tion below a reasonable threshold (since the real number of
animals is an integer, a population below some threshold
should not be considered). For Erdés Rényi and small scale-
free networks this implies no speciation; all nodes are con-
nected and no empty regions separate between two quasispe-
cies. For large SF networks, on the other hand, the removal
of hubs will produce a disconnected network, as in the case
of an intentional attack considered by [25].

As the competition coefficient increases, the frequency
variance for nodes of the same degree grows, and eventually
nodes with the same k are segregated into a group of surviv-
ing (full) nodes and a group of extinct (empty) nodes, as
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FIG. 2. (Color online) Mean-field predictions (lines) vs simula-
tion results for scale-free (solid line: theory, squares: simulation)
and Erdds Rényi (dashed line and circles) networks. The number of
nodes is N=2000; other parameters are a=1, yy=1, ©u=0.0041, and
y=0.01. The ER results are shifted (by 10) to the right to avoid
overlap with the SF results. The inset shows the mean-field predic-
tions vs the simulation results for a network with N=800 nodes,
both for the SF [solid line (squares)] and for the ER [dashed line
(circles)]. Parameters are a=1, yy=1, ©=0.0001, and y=0.1.

exemplified in Fig. 3. The mean-field approximation clearly
fails in that parameter regime. This segregation transition
within nodes of the same degree affects first the hubs, but as
competition increases, the speciation occurs for lower and
lower degrees. This is the random network state that corre-
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FIG. 3. (Color online) A series of histograms showing the occu-
pation distribution of nodes with degree k=4 (on the same network)
with different competition coefficients. From top to bottom, the
fraction of nodes with population ¢, P(cy), is shown for y=0.05,
0.1, 0.3, 0.5, and 1. For weak competition, the histogram allows a
peak around the value predicted by the mean-field theory. For
strong competition, the nodes are either “alive” or admit no popu-
lation at all.
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FIG. 4. (Color online) The average population per degree for ER
networks with global (circles) and local initiations (diamonds for
random degree, dots for largest hub initiation). Results presented
are an average of 20 different realizations, with five different initial
conditions for global initiation, 20 for local initiation, and one for
the largest hub. The parameters are N=800, (k)=12, a=1, y,=1,
#;=0.0041, and y=0.01.

sponds to the “spiky phase™ on a lattice [20].

In that spiky phase, there is a surprising distinction be-
tween local initiation (i.e., one node with its maximal carry-
ing capacity and all the others empty) and global initiation
(i.e., all the nodes with a small random population). It turns
out that for global initiation the probability of a large node to
survive is much smaller than in the case of local initiation, as
demonstrated in Figs. 4 and 5. This feature is independent of
the degree of the node around which the initial condition is
localized. Starting with a populated hub, or with a populated
node of a lower degree, the same dependence of the popula-
tion on the degree of the node is obtained.
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FIG. 5. (Color online) The average population per degree for SF
networks, with global (circles) and local (diamonds) initiations. The
average was taken over six different realizations, with five different
initial conditions for global initiation, and 60 initial conditions for
random degree local initiation. The parameters are N=800, P(k)
~k23, a=1, yy=1, #;=0.0041, and y=0.01.
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IV. DISCUSSION

The concept of fitness in the theory of evolution has to do
with the performance (survival and reproduction) of an indi-
vidual (i.e., a phenotype) in a given environment. The envi-
ronment of a single organism is determined by extrinsic fac-
tors, such as the availability of food, air, sunlight, and other
necessities. The neutral theory of evolution [26] in its various
forms assumes that the differences between viable individu-
als are negligible, and that the main limitation on the growth
of a population is its competition with other, equally fitted,
populations. Within this framework, sympatric speciation
takes place when the genetic drift is accompanied by strong
frequency-dependent competition, where the ‘“strength” is
measured with respect to the mutation rate. In this paper, we
have tried to illustrate the large scale structure of the genetic
polymorphism in the emerging population.

One should bear in mind that even if the assumption of
neutrality is wrong in general, it perhaps still holds for cer-
tain parts of the genome. An implementation of the theory
presented here does not require a global sequencing of the
whole genome, and is even inadequate in that case, as no
loops appear in that limit. A sequence of O(10) nucleotides
or regions in the genome is more than sufficient for the
analysis suggested here. Moreover, we have examined only
the steady-state properties of the population. If the whole
genome is the subject of the study, the system never equili-
brates; small sequences, on the other hand, may reach equi-
librium within a reasonable number of generations.

The present work suggests three qualitative insights re-
garding examination of polymorphism data collected from a
population at a steady state.

(1) The criteria for speciation is generally not sharp, and
depends on both the network’s topology and history.

(2) The population density on the “hubs” is smaller than
the population on the “dead ends.” The more links a point
admits, i.e., the more viable mutations it possesses, the more
it suffers from competition.

(3) The chance to find an existing “hub” (to sample indi-
viduals with the corresponding genotype) is much greater for
the case of local initiation than for the case of global initia-
tion. This last criterion may be utilized to recover the history
of a colony. Specifically, it may help one to distinguish be-
tween a colony that grew monotonically from a founder and
a colony that recovered from a catastrophe.

The extent to which one can quantify these qualitative
considerations depends on the resolution of certain technical
obstacles. The main problem seems to be the reconstruction
of the viable mutations network.

If all possible genotypes appear with, say, Poissonian
fluctuations, one should assume that part of the sequence is
irrelevant for single organism fitness and that the competition
is more or less global. If the population is localized around a
few genotypes, implementation of our results requires a
knowledge of the structure of the viable mutations network.
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Distances should be measured along that network. The Ham-
ming distance is meaningless since the shortest path may
pass through a nonviable genotype.

If the number of sequenced individuals is large enough
though, one may use the fluctuations induced by demo-
graphic stochasticity in order to make a distinction between
nonviable mutations and the genetic configurations prohib-
ited by competition. In that case, the qualitative power of our
results may be extracted. With the current vast growth of
genetic data, one may hope that such an implementation will
be possible in the near future.
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APPENDIX

In this appendix, we use the mean-field approximation to
solve the steady state of the population, as a function of the
degree on a network. Assuming that all the nodes with the
same degree admit the same population, and that all the
nodes of the same degree “see” the same environment on
average, Eq. (1) may be written as

ck=Ck—bci—kyck®k+,u,k(®k—ck), (Al)

where ®, (this notation has been used also by [27,28]) is the
average population of the nearest neighbors of a node with
degree k. If the network is uncorrelated, i.e., the degree dis-
tribution of the neighbor profile of a node with degree k is
independent of node degree, on average all the nodes see the
same surroundings, and one obtains ®,=0 for all the pos-
sible k’s. The explicit expression of O is

2 (kPycy)
ko .
@ — min ,
(k)
where kP, is the probability that an arbitrary link leads to a
node with degree k. ¢, is the average population on a node
with degree k, and (k) serves as the normalization factor.
With that, Eq. (A1) becomes

(A2)

cp = ak, — bet — kye® + uk(® —¢p). (A3)

In a steady state where the left-hand side of that equation
vanishes, one can solve for ¢, at a given

_a— vk® —kp + V(a— ykO — ku)> + 4bku®
B 2b '

Ck

(A4)

The two equations (A3) and (A4) are then solved self-
consistently for @ to yield ¢ for all the k’s.
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